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ABSTRACT 

Let H~ = SIS ~, where S is the group of all permutations of a set of cardinality N~ 
and S ~ is its subgroup of permutat ions moving less than 1~ elements. The 
infinite simple groups H~, v > 0, have covering number  two; that is, C 2= H~ 
holds for each nonunit  conjugacy class C[M]. Janko's  small group J1, the only 
finite simple group with covering number  two, satisfies also: 

(*) C~ C C2" (73 for any nonunit  classes C~, C2, C3. 

In fact, Ho (u > 0) are the only groups of covering number  two where (*) is 
known to fail. In this paper we determine arbitrary products of classes in H. 
O' >0). 

§1. Introduction 

The covering number cn(G)  of a group G is defined as the smallest positive 

integer n for which C n = G holds for any nonunit conjugacy class (COC) C in 

G. We write cn(G)  = ~o when no such n exists (so cn(G)  < ~o indicates that such 
an n exists). 

The general covering number gcn(G) of G is defined as the smallest positive 

integer n such that C C_ C1 • C2" • • C.  holds for any nonunit COCs C, C~ . . . .  , Cn 

in G. We write g c n ( G ) = o ~  when no such n exists. See [2], [1], [8] for 

background and more references. 

It is not hard to show that cn(G)  =< gcn(G)  + 1'* and that cn(G)  < oJ only if G 

is a simple nonabelian group. If G is a finite nonabelian simple group, then 

g c n ( G ) < t o  (hence c n ( G ) < o ~ ) ;  but c n ( G ) = g c n ( G ) = ~ o  may hold for an 

* Supported in part  by NSERC grant. 
" In [2], [8] the parameter  ecn(G),  defined as the smallest positive integer m for which 

G C_ C1" • • Cm holds for any nonunit  COCs C , . . . ,  C,,, is treated. It is easily seen that gcn(G)  < ~0 iff 
e c n ( G ) <  oJ and that then ecn(G)  = g c n ( G ) +  1. 
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infinite simple group ([2], [1], [8]). In cases where the numbers cn(G), gcn(G) for 
a finite nonabelian simple group G are known we have cn(G)=<gcn(G), and 

actually cn(G) = gcn(G). 

Only one finite simple group has covering number two, namely the smallest 

Janko group J,. In this case indeed cn(J~)= gcn(J0 = 2 [1]. In [1], [8] it was 

shown that cn(G) = gcn(G) = 2 holds frequently for some natural infinite simple 

groups. Indeed, let S denote the group of all permutations of a set B of 

cardinality l,l,, u > 0. Let S* denote its normal subgroup of permutations moving 

less than N, elements, and let H~ = ST+~/S ~, ~" = 0 , . . . ,  u. Then H~ is an infinite 

simple group and, in fact, cn(H~)= 2 for ~-= 0 , . . . ,  ~,. Moreover, we have 

cn(H~) = gcn(H~) = 2 for 0 =< r < v. 

The situation is different for H~ = S / S  ~, which will be briefly denoted as H~. It 

was pointed out in [8] that while cn(H~) = 2, we have gcn(H~) > 2. Presently, the 

groups H~, v > 0, are the only known groups G with 2 = cn(G) < gcn(G) < co. 

(For v = 0 we have cn(H0)= gcn(Ho)= 3. See [1], [3], [8].) 

In this article we study the products of arbitrary COCs of H~, v > 0. It turns 

out that although Cl C_ Ca- C3 fails to hold for some nonunit COCs C,, C_~, C3 in 

H.,  this relation still holds widely. In fact, with one exception, the product of two 

nonunit COCs of H,. includes all but at most three nonunit COCs. The exception 

is provided by the two classes of involutions of H,,. Those two COCs, with the 

two COCs of elements of order 3 in H,,  form a set K of four COCs, with the 

property that any product of two COCs of K is disjoint from the other two 

COCs and K is the only set of four COCs with this property. Moreover, 

whenever Ca, C2, C3 are nonunit COCs for which Cl _C C2" C3 fails to hold in H~, 

then at least two of Ca, C2, C3 belong to K. 

In order to state the results in detail, we anticipate some notations introduced 

in §2. Let (2), (2), (3), (3), (i + 2 + .3) denote the respective COCs of sr~S ~, ~2S u, 

~3S ~, ~4S ~, ~5S" in H,,  where ~a . . . . .  ~ E S satisfy the following conditions: 

~ is a fixed-point-free involution; that is, ~a has N, orbits of cardinality 2 and 

no other orbits. 

~¢2 is an involution with N, fixed points and 1~, orbits of cardinality two (and no 
other orbits). 

~3 is a fixed-point-free permutation of order 3; that is, ~3 has 1~ orbits of 

cardinality 3 and no other orbits. 

~4 is a permutation of order 3 that has N~ fixed points and l~ orbits of 

cardinality 3 (and no other orbits). 

~¢s is a permutation of order 6, that has N~ fixed points, ~ orbits of cardinality 

2 and N~ orbits of cardinality 3 and no other orbits. 
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Let OD~ denote the family of all COCs C in H~, where C is the COC of ~SV 

for some ~: E S, all of whose orbits are of (finite) odd cardinality. 

Write P(G,  C2, C3) for C, C_ C2" C3. Then P is a symmetric 3-place relation on 
the set of COCs of H~ (see Proposition 2.3) that completely determines the 

product of COCs in H~, as C'. C"= Uc~c.c.,C. By cn(H~)= 2, P(C1, C2, C3) 
holds whenever the nonunit COCs C1, C2, C3 are not distinct. Let us say that a 

set {G,  C2, C3} of COCs is a P-set if P ( G , G ,  C3) holds, and that it is a 
non-P-set if P(C,, C2, C3) fails. (By the symmetry of P the order in which G ,  C2, 
C3 appear is unimportant.) Thus, the product of any two COCs in H~ is easily 
computed, once all non-P-sets are determined. These are determined in 

THEOREM 1. Let u > O, and let C~, C2, C3 be nonunit COCs in Hr. Then 

{G, Ca, C3} is a non-P-set if and only if one of the following three mutually 
exclusive conditions hold: 

(1) {C,, C2, C3} = {(2), (~), U}, U E OD..  

(2) {C1, C2, C3} = {(3), (3), V}, V @ {(2), (2)}. 
(3) {c , ,  c2, c3} = (3), (i + + 3)}. 

Let us spell out the actual value of a product of two nonunit COCs in H. 
0'  > 0) as it emerges from Theorem 1. Denote by (]) the unit COC of Hr. Then 
we have 

THEOREM A. Let v > O, and let C~, C2 be nonunit COCs in H,. Then : 

G" C2 = H. \ O(C,, C2) 

where O(C,, C2) = Q(C2, C~) is given by" 

1. O ((2), (2)) = U u~ooo u. 
^ ,~ ~, 

2. 0((2),  (3~)) = (1) U (2) U (3) U (] + 2 + 3). 

3. 0((2-), (~,)) = (]) U (:2) U (3). 
4. 0((:2), (i + 2 + 3)) = ( i) U (3). 
5. O((~), U) = ( i) U (:2), U E OO,. 
6. 0((~), (~))= ( i )U  (:2) U (3). 
7. 0(<'~>, <3>) : <i) U <2) U (3). 
8. O((2), U) = (i) U (:2), U 6 0 D , .  

9. O((3), (3)) = (i) U (2) U (2). 

lo. 0 ( (3) ,  (i + + 3)) = ( i )  u 
11. Q(C,, C,) = (i) if C , / C 2  and Q(C,, C2) not listed in 1-10. 
12. Q(C,, C~) = 0 if c,  = G.  

The product of any finite number of COCs in H.,  ~, > 0, is determined by 
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Theorem A and its following corollary, Theorem B, which follows also from 
Droste's recent paper ([3], Theorem 2). 

THEOREM B. Let u > 0 and let Cj, C2, C3, C4 be any nonunit COCs in H~. 

Then : 

(1) C~. C2. C3. (74 : H,, 

(2) Cl" C2" C3 = H. if C~ c C~. C3, 

(3) C,- C2" (73 = n ,  \( i)  if C, ~ C~. C~. 
In particular, gcn(H~) = 3. 

PROOF. It is enough to prove (2) and (3), as (1) then follows. 

(2) Let C1 C_ (72- C3. Then C~ C C~. C2" C3. But by cn(H,) = 2, C~ = Hv and 
SO CI ° C 2 " C 3 = H,. 

(3) Let C1 ~ C2" C3. We show that C,. Cz" C3 = H~ \(1). 

(a) C~. C2- C3 C_ H, \ (1): Indeed, by C~ = C~' ~Z C2" C3 we have 
C~-' N C2. C3 = ¢3 and so (1) ~ C~. C2" C3. 

(b) H, \ (1 )CC, .C2 .C~:  Let C be any nonunit COC. We show that CC_ 

C,. C2" (73. Indeed, let C' be any COC not mentioned in Theorem A 1-10. (for 

instance, let C be the COC of s~S', where ~ E S is a permutation all of whose 

orbits have cardinality 4). Then by Theorem A, C C C~ • C' and C' C (72- C3, so 
C C_ C~" C~" C~. [] 

Here is an overview of this paper. In §2 we formulate as Theorem 2 a parallel 

of Theorem 1 that describes the non-P-sets in the family of o-simple COCs - -  a 

certain family of COCs in the symmetric group over a countable set. Theorem 2 

is staled as a theorem on types, these mathematical objects being convenient 
technical names for classes in the symmetric groups. Theorem 1 is derived from 

Theorem 2 as follows. We observe that a natural isomorphism exists between the 

relational structure consisting of the COCs of H~ with the 3-place relation P, and 

the structure consisting of the o-simple COCs with the 3-place relation P, when 

1~o is not the sum of countably many smaller cardinals. Then we indicate how 
Theorem 2 is used to establish Theorem 1 in the remaining cases. 

In §3 we show that the sets listed in Theorem 2 are indeed non-P-sets. For sets 

listed in (1) this follows from the analysis of products of COCs of involutions of a 

symmetric group S [6]. In fact, we show that if a permutation in S has orbits of 

odd length only, and is a product of two involutions, then the involutions must be 

conjugate in S (Proposition 3.2). Similarly, the sets listed in (2) are non-P-sets 

since the product of two distinct COCs of order 3 in any symmetric group does 

not contain permutations of order less than 3 (Proposition 3.4). 
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In §4 we show that the sets not listed in Theorem 2 are indeed P-sets. 

P-relations established by.means of planar Eulerian graphs play a central role 

here. Proposition 4.2 lists such relations established in [8], and Proposition 4.3 

lists some extra relations we need. 

In §5 the way to exploit planar Eulerian graphs in this context is explained, 

and used to establish the relations listed in Proposition 4.3, thereby completing 

the proof of Theorem 2, and so also of Theorem 1. 

PROPOSITION 2.1. 

PROPOSITION 2.2. 

~ - . ~  (IB l> No). 

§2. From the uncountable to the countable 

In this section we show how Theorem 1 follows from Theorem 2 - -  a parallel 

Theorem, specifying the non-P-sets of COCs in a certain family of COCs in the 

symmetric group over a set of cardinality ~¢0. 

We use the notation of [8], which we now briefly review. N denotes the set of 

positive integers and N ÷= N U {No}. A type t is a cardinal-valued function 

defined on N +. For n E N +, n* denotes the type defined by n*(m)= 1 if m = n, 

n*(m)=O otherwise (m ~N+) .  Thus t=~,~N÷t(n)" n* holds for any type t, 

where the sum of an arbitrary set of types and the product of a type by a cardinal 

number are defined in the natural way. 

For every type t we set It I = E,~N+ t(n).  n and call t a z-type if I tl = N,. For 

every ordinal r we define an equivalence relation -7  on types by: 

t =~ s iff t = to + r, s = So + r for wome types to, So, r with I to I, I So I < l,l,. 

I BI denotes the cardinality of the set B, SB denotes the group of all 

permutations of B, and S~ denotes the group of all permutations of B moving 

less than N~ elements. The subscript B is omitted when the context allows. The 

type ( of ~ E SB is defined by requiring that ~(n) is the cardinality of the set of 

f-orbits of cardinality n. Thus, ((1) is the cardinality of the set of fixed points of 

and ~(No) is that of the set of infinite orbits. If ~ =  t we say that ~ is a 

t-permutation. Obviously, 1~1 = I B i for any ~ E SB, and whenever t is a type with 

I tl = I BI, there are t-permutations in SB. 
The fundamental role that types play in our context is due to the following 

well-known basic facts (see [9], 1.3.11; [7], Theorem 4): 

Let ~, *1 E S~. Then ~ and rl are conjugate in S~ iff ~ = ~. 

Let ~, '1 E SB. Then ~S~ and *IS~ are conjugate in SB/S~ if[ 

We use the letter P to denote several related 3-place relations. The reader will 
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be able to select the right one in a given context .  If C~, C2, (73 are COCs  in a 

group G, then P(C~, C2, C3) stands for CI C (:'2" C3. If gl, g2, g3 E G then 

P(gl ,  g2, g3) stands for [g,] C [g2]- [g3], where [g] = {xgx-':  x E G} is the C O C  of 

g in G. When  G is a group where  C = C ~ holds for  every  COC C, P is a 

symmetr ic  relation. 

For  types r, s, t we write P(r, s, t) iff s c = r/s r holds for  some r -pe rmuta t ion  ~, 

s -pe rmua t ion  rt and t -permuta t ion  ft. Thus,  P(r, s, t) iff I r I = t s I = It I, and 

whenever  B is a set with I BI  = I r I = Is I = It I, then ~ = rt~" holds for  some 

r -permuta t ion  ~, s -permuta t ion  7/ and t -permuat ion  ~" in SB. 

The  most  useful propert ies  of P as a 3-place relat ion on types are summarized  

in 

PROPOSITION 2.3 ([8], L e m m a  1). P is symmetric, homogeneous and superaddi- 
tive ; that is : 

(a) P(t~, t2, t3) iff P(to(I), to(:), too)) for some (equivalently any) permutation 0 of 
{1,2,3}. 

(b) P(r, s, t) implies P(kr, ks, kt) for any cardinal k. 
(c) P(r~, s,, t~) for all i E I imply e(E,~,r,, L~,s,, E,~,t,). 

By a simple r-type we mean  a r - type  t satisfying t(n) = 0 or t(n) = N~ for all 

n E N + (notice that t(n) = 1~, must hald for some n by I tl = N~). If I n  I -- N. and 

E SB, then ~ is a simple permutation and [~] is a simple COC if ~ is a r -s imple 

type. 

We shall identify an ordinal  with the set of smaller ordinals and a cardinal 

number  1,l, with co,, the first ordinal  of its cardinality (where coo is abbrevia ted to 

co). Thus N~ = o9, becomes  also a canonical  set of this cardinality,  and we let 

H, = S~./SL.  If t is any r - type  and ~ E S~. is a t -permuta t ion ,  we let [t] and (t) 

deno te  the COCs [~] in S~. and [~S:oJ in H ,  respectively.  

We say that an ordinal z has cofinality w and write col(z)  = co if z has a cofinal 

infinite countable  subset. We  shall need this not ion only to abbreviate  the 

s ta tement  that ~ ,  is a sum of countably  many smaller cardinals - -  which may 

happe  n 9nly if z = 0 or col (z)  = co ([5], IV. 3.9, p. 134). We can now state 

PROPOSITION 2.4. Let v > 0, co l (u)  ~ co. Then for every COC C in H~ there is a 
unique simple v-type t such that C = (t). 

PROOF. We first note  that at most  one such t exists, for,  by Proposi t ion 2.2, if 

t and t '  are two distinct simple v-types,  then ( t ) ~  (t '). 

Now let C = [~S:,.] be any COC in H , ,  and define a type t by t (n )= 0 if 

~ ( n ) <  ~ , ,  t(n) = N~ otherwise.  Since u > 0 and co l (v)  ~ co, l,l~ is not  the sum of 
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countably many smaller ordinals. Thus, we must have t(n) = ~,  for some 

n ~ N ÷ and so t is a simple u-type; moreover t = ~  whence C = (t). [] 

For a COC C in Hv, 0 <  u, cof (u)~  o9, let tc denote the unique simple u-type t 

for which C = (tc). 

PROPOSITION 2.5. Let v > 0 ,  cof (u)~  o) and let C1, C2, C3 be COCs in Hr. 

Then P ( C ,  C2, C3) if/] P(tc,, tc~, tc3). 

PROOF. Assume first P(tcl, tc~, tc3). This means that [tc,] C_ [tc~]" [tc3], which 

implies that (tcl) C_ (tc)" (tc), i.e. C1 C (52- (:?3, and so P(C~, Cz, C3). 

Assume now that P(C~, C2, C3) and let ~, rl, ff E S~. = S satisfy 

= . 

We may further assume that ~ = tcl, ~ = tc~, ~ = tc~. By our assumption, ~ = ~'o- 

holds in S, where o-~ S". Let A0 denote the set of points moved by ~r. Then 

I A o l < ~ , .  Define A,+~ from A.  by setting 

A.+~ = A.  U ~7(A.) U ~-~(A.) U ~'(A.) U ~'-~(A.). 

Then A = U.c~  A.  satisfies I A I < " - ,  and ~ I A, 77 1 A, ~" I A E SA. Let 

~ ' = s c l ( o ~ \ A ) ,  ~ / '=~?l (oJ , \A) ,  ~ '=~J(~o~ \A) .  

Then ~', ~7 ', if' E S~A,  s c' = ~7 '~" and ~' =tcl, ~' = tc, ~' = to, Thus, P(tc,, tc~, tc~). 
[] 

For any nonzero type t define a simple 0-type t o by setting t°(n) = 0 if t (n)  = 0 
and t°(n) = 1% otherwise. Obviously, t --> t o is a one-to-one mapping if t varies on 

simple v-types. Let ~v = (]~, P) be the relational structure with domain the set 

2~ of all simple v-types, and the 3-place relation P (restricted to E~). Our next 

proposition shows that t--~ t o is actually an isomorphism of ~:~ with ~o. 

PROPOSITION 2.6. Let r, s, t be simple v-types. Then P(r, s, t) iff P(r °, s °, t°). 

PROOF. Assume first P(r  °, s °, t°). Then by homogeneity of P (Proposition 

2.3) also P(I~ • r °, ~ • s ~, ~ -  t°). But ~t~ • r °= r, 1~ • s o = s, ~ • t o= t and so 

P(r, s, t). 

Assume now P(r, s, t), and let ~:, ~/, ~" be permutations of a set B of cardinality 

N~ satisfying ~ = T/~" and ~ = r, a~ = s, ~ = t. For each l with r(l) > 0, m with 

s ( m ) > 0 ,  n with t ( n ) > 0  let Ct C B, Dr, C_B, E, C_ B be a countable union of 

E-orbits of cardinality l, of ~/-orbits of cardinality m, and of ~-orbits of 

cardinality n, respectively. Let 



VOI. 50, 1985 PRODUCTS OF CONJUGACY CLASSES 61 

Then [Aol = No. Let 

A.+,+ = A .  U r l(A.)  U 'r/- '(A.) U sr(A.) U ~-'+(A.), 

and let A = U , ~ , o A . . T h e n l A l = , o a n d  s c '=~:PA,  r t ' = r  t I A ,  ~ " = ~ I A  are 
permutations of A satisfying ~ ' =  r/'~", ~ ' =  r °, a~'= s o and ~ '=  t °. Thus 
P(r °, s °, to). [] 

Let COC(H~)=  (COC(H~),P)  denote the relational structure consisting of 

the set COC(H~) consisting of all COCs of H~ with the three place relation P 

(restricted to COC(H~)). Combining Propositions 2.4, 2.5, 2.6 we have 

PROPOSITION 2.7. Let u > 0 ,  co f (u )#  w. Then COC(H~) = (COC(H~),P)  and 

~,o = (Eo, P) are isomorphic ; in fact, the mapping C--> t ° is an isomorphism of 
COC(H, )  with Eo. 

The structure ~o - -  and thereby the structures ~ for any ordinal v - -  is 

completely determined once the relation P is specified. By symmetry of P 

(Proposition 2.1) it is enough to specify all sets {r, s, t} of simple 0-types for which 

P fails. This is the content of Theorem 2. For n E N let ri, n be the simple 
0-types defined by: 

ti = No" n*, 
n = i + , i = n o . 0 * + n * ) .  

Let od0 denote the set of 0-types satisfying t ( 2 n ) =  0 for all n E N ÷. 

THEOREM 2. Let r, s, t be simple O-types. Then P ( r, s, t) fails if and only if r, s, t 
satisfy one of the [ollowing three mutually exclusive conditions: 

(1) {r,s , t}={2,2,  u}, u @odo, 

(2) {r ,s , t}={3,~,v} ,  v E{2,~}, 

(3) {r,s , t}={2,3,  i + 2 + 3 } .  

The proof of Theorem 2 is given in §3, 4, 5. 

Let now v > 0 ,  and set for n G N + 

h = N ~ . n * ,  
= ] + h  = ~. (1"  + n*). 

Let od.  denote the set of v-types t satisfying t(2n) = 0 for all n E N ÷, and let 

O D .  = {(t) : t E od.}. 
With this notation, Theorem 1 for v > 0, cof(v) # to is an immediate conse- 

quence of Theorem 2 and Proposition 2.7. We now briefly indicate a way to 

prove Theorem 1 in the case co f (v )=  to, leaving the details to the reader. 
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Assume that cof(v)= oJ. Then every type t with t ( n ) <  N, for all n E N +, 

E,~N÷ t ( n ) = l %  defines a nonsimple class (t) in Hv; indeed, ( t ) ~ ( s )  for all 

simple v-types s, by Proposition 2.2. Thus Proposition 2.4 fails, due to the 

presence of nonsimple classes, and a substitute for it is needed. 

Let us say that a v-type t is a special v-type if it satisfies the following 

conditions: 

1. t (n)<t¢v for all n ~ N  +, E,>~t(n)=M~. 

2. t (1)= t(2)= t(3)= 0. 

3. If t ( n ) > 0  then t(n)>-t¢o. 
4. E,~N+ t(2n) E {0, t¢~}, E,~Nt(2n + 1) E {0, l,l,}. 

PROPOSrrION 2.8. Let cof(v) = to. Then every nonunit COC C in H~ satisfies 

C = (t), where t satisfies one of the following three mutually exclusive conditions : 

(1) t is a simple v-type. 
(2) t is a special v-type. 
(3) t = tl + t2, where t~ is a simple v-type and t~. is a special v-type. 

Next one shows that all triples of COCs of H,  listed in Theorem 1 are indeed 

non-P-sets. Negating this assumption, one arrives at a counterexample to 

Theorem 2, using Proposition 2.8 and an argument of the kind provided for 

Proposition 2.5. 
Finally, Theorem 2 is used to show that if C~, C2, C3 are COCs in H~, and 

{C1, C2, C3} is not a triple listed in Theorem 1, then P(C1, C2, C3). This follows 

from: 

PROPOSmON 2.9. Let cof(u) = ~o. Let r, s, t be nonunit v-types satisfying the 

conditions of Proposition 2.8. Assume further: 
[1) {r , s , t }#{2 ,~ ,u} ,  u ~od~,  

(2) {r ,s , t}~{3,3 ,  u}, v E{2,2}, 

(3) {r ,s , t}~{2,3 ,  i + 2 + 3 } .  

Then P(r, s, t). 

OUTLINE OF PROOF. 1. It is enough to show that one can write r = E,~r, ,  

s = E~xs~, t = E~t~,  where r ,  s~, t~ are simple 0-types and {r, s ,  t~} is not listed in 

Theorem 2 for each i E I. 
Indeed, then P(r, s, t) follows from Theorem 2 and Proposition 2.3(c). 

2. We may assume that each of r, s, t is either a simple v-type or a special 

v-type. 
Indeed, we have t = t + t whenever t is either a simple v-type or a special 

v-type. Thus we can write (r, s, t) = (r', s', t') + (r", s", t"), where each of r', r", s', 

s", t', t" is either a simple v-type or a special v-type. 
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3. We may assume at least one of r, s, t - -  say t - -  to be a special v-type. 

Indeed, if r, s, t are simple u\types then P(r, s, t) follows by 1. 

4. We may assume {r,s}fi{2,2}. 

Indeed, assume {r, s} = {2, 2}. Since t is a special v-type, Z,~N+ t(2n) @ {0, N,}. 

If this sum is 0, then t E o d ,  and so (1) is violated. Thus Z ,~u* t (2n )=R , .  

P(r, s, t) follows by 1. 

5. We may assume r ~  s. 

Indeed, otherwise P(r, s, t) follows by 1. 

6. If the assumptions listed in 2-5 hold, then P(r, s, t). 

Indeed, since t is a special ~,-type, t ( n ) = 0  for n = 1,2,3, and since r ~  s, 
^ 

{ r , s } ~ { 2 , 2 } w e m a y a s s u m e ,  say, X , > 2 s ( n ) = N ~ . P ( r , s , t ) f o l l o w s b y  l. [] 

§3. Theorem 2 lists only non-P-sets  

In this section we show that P(r, s, t) fails for 0-types r, s, t if {r, s, t} satisfies 

one of the three conditions listed in Theorem 2. We say that {r, s, t} is a P-set (a 
non-P-set)  to denote that P(r, s, t) holds (fails), i.e. that an r-permutation can 

(cannot) be represented as a product of an s-permutation by a t-permutation. 

PROPOSITION 2.1. P(2 ,~ ,  u) fails for u ~ odo. 

Proposition 3.1 follows from the following proposition, which states that if the 

product of two COCs of involutions in some symmetric group contains a 

permutation all of whose orbits are of odd cardinality, then the two COCs must 

be equal. 

PROPOSITION 3.2. Let w be a type satisfying w ( 2 n ) = 0  for all n C N ÷. I f  

P(w, ml . l* + m2" 2*, n~.l*+n~.-2*)  then m~ = n~ and m2= n2. 

PROOF. This proposition follows from [6]. (If I w l <  ~0 use [6], Theorem 2.6. 

If I wl=>l~0 use [6], Theorem 2.1 (or 2.1') and Theorem A.1.) We give an 

independent proof: 

Let ~, 7/, ~" E S satisfy ~: = ~/(, T/2 = ~~ = 1 and assume that all ~:-orbits have 

odd cardinality. For each a C B let 2n, - 1 be the cardinality of the ~-orbit 

containing a. Then ~°o l(a) : ~ "-(a) holds for each a E B and ~-~ = fiT/. Thus 

~"o ' ( a ) :  (~ ')"o(a) : (~ ) "o (a )  : ~'(-q()"o-~/(a) = ~"o- '7/(a).  

Hence ~/(a)= a if and only if ~(~"o l (a ) )=  ~"o l(a). Thus a--->~"o-'(a) is a 

permutation of B mapping the set of fixed points of ~/onto the set of fixed points 

of ~', and so ~(1) = ~(1), and ~(2) = ~(2). [] 
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PROPOSITION 3.3. P(3,3,  v) fails for v E{2,2}. 

Proposition 3.3 is a consequence of the following proposition, which states 

that the product of two distinct COCs of elements of order 3 in any symmetric 

group does not contain a permutation of order less than 3. 

PROPOSITION 3.4. Assume P(l," 1" + lz" 2*, mi • 1" + m 3 "  3", nl" 1" + n3" 3*) 

where Ii, 12, m,, m3, nl, n3 are any cardinal numbers. Then ml = n~ and m 3  = n 3 .  

Proposition 3.4 is proved using 

LEMMA 3.5. Let G be a group with unit 1, and let g, h E G satisfy g3 = h 3 = 

(gh): = 1. Then gh- 'ghg- '  h = 1. 

PROOF. Note that ( h g ) : = l ,  as hg =g- i (gh)g .  Thus, gh = h-~g -~ and 
gh-'ghg-~h = g h - ' h - ' g  ~g ~h = ghgh = gg- lh - ih  = 1, where the second equal- 
ity follows from g3 = h 3 = 1 and the third from (hg) 2 = 1. [] 

PROOF OF PROPOSITION 3.4. Let ~, 7, ff be permutations of a set B, satisfying 

= r/if, ~: = r/3 = if3 = 1. Let Fix(7), Fix(if) _C B denote the sets of fixed points of 

7, ~', respectively. We shall show that the permutation ~/~'-~ E SB maps Fix(,/) 

onto Fix(~'), and so ~(1) = ~(1), ~(3) = ((3) and Proposition 3.4 is established. 

It follows from Lemma 3.5 that: 

n~'-'n~'n - ' =  ~'-', ~'7-'~'7~ " - ' =  n ' 

Let a EFix(7) ;  that is, r t ( a ) = a .  Then ~ 7 - 1 ~ T U ' ( a ) = r t - ~ ( a ) = a ,  so 
~ ' ( T U ' ( a ) ) = T U ' ( a ) ,  i.e., 7~ ' ' (a )EFix(~ ' ) .  Similarly, if ~ ' (b )=b  then 

n(~'n-'(b)) = ~'n-'(b), i.e., ~ '7- ' (b)E Fix(n). Thus 

n~" '(Fix(n)) C_ Fix(O and ~'n-'(Fix(O) c_ Fix(n). 

By ~'7-' = (Tff--l) -1' we have 7 ~ - l ( F i x ( 7 ) )  = Fix(~'). [] 

PROPOSITION 3.6. P(2, 3, 1 + 2 + 3) fails. 

This proposition follows from 

PROPOSITION 3.7. Assume P(12" 2", m~. 1" + m3" 3", nc l*  + n2" 2* + n3- 3"), 

where l:, m,, m3, n~, n2, n3 are cardinal numbers. Then n~ < ml. 

PROOF OF PROPOSmON 3.7. Let ~, 7, ~" be permutations of a set B satisfying 

~=7~' ,  ~ = l : . 2 ' ,  r ~ = m , . l * + m 3 . 3 * ,  ~ = n ~ ' l * + n 2 . 2 * + n 3 . 3 * .  

We shall show that ~'7-' E S, maps fixed points of ~" to fixed points of 7 and 

conclude that nt  <----ml, thus establishing Proposition 3.6. 
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Let ¢ ( a ) =  a, and let d = ~'rl-~(a). We shall show that ~/(d) = d. Since this is 

clear when d = a, we assume further that d P  a. Let b = rl(a), c = ~(b). 

r/(d) = d will be the last of a list of claims that we now establish. 

I. a ~  b~  c~  a, rl(c)= a and ¢(c) = d 
Indeed, b = r / ( a ) ¢  a, as otherwise ~/ l ( a ) =  a and so d = ~/  ~(a)= a, con- 

tradicting our assumption. The rest follows by 7 3 = 1 and ~'~ l ( a ) =  d. 

2. ¢ (b )=  a 

Indeed, ¢ ( a ) =  he(a)= n(a) = b, so by ~2= 1, ¢(b) = a. 

3. ~ (b)=  c 
Indeed, ~ (b)=  ~/-X~(b)= ~ - l ( a ) =  c by 1. 

4. d~  b~ c~  d, and ~(b)= c, ( (c )= d, ~(d)= b 

Indeed, if d = b then ~C(c)= r/(~'(c))= "0(d)= r / (b)=  c. But then ~(1)>0,  

contradicting ~ = 12-2*. Thus d ~  b. 

If d = c then ¢ (c )=  r/(~'(c))= r / (d )=  "0(c)= a, which is impossible by 1 

and 2(b¢ c by 1). The rest follows from 1, 3 and ~'~(b)= b (as ~ ( n ) = 0  for 

n > 3 ) .  

5. ~:(c)= d 

I n d e e d ,  ~:(d) = n ( ¢ ( d ) )  = n ( b )  = c, so by ~ = 1, ¢ ( c )  = d. 

6. ~ ( d ) =  d 

Indeed, r / (d )=  -q (~'(c))= ~:(c)= d, by 5. [] 

Propositions 3.1, 3.3 and 3.6 show that whenever r, s, t are 0-simple types 

satisfying one of the conditions (1), (2), (3) of Theorem 2, then {r,s, t} is a 

non-P-set, i.e., Theorem 2 lists only non-P-sets. 

§4. Theorem 2 lists all non-P-sets  

In this section we show that P(r, s, t) holds for all simple 0-types r, s, t, if {r, s, t} 

is not listed in Theorem 2. Let us put: 

L~ = {{2,2, u}: u E od0}, 

L2 = {{3,3, v}: v E {2,2}, 

L3 = {{2,3, 1 + 2 + 3}}, 

L = LI U L2 U L3. 
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We shall prove: 

THEOREM 4.1. Let r, s, t be simple O-types, {r, s, t} ~ L. Then P(r, s, t). 

Before proving Theorem 4.1 we state in two propositions the P-relations we 
shall need. We shall use freely the properties of P listed in Proposition 2.3, 
namely symmetry, homogeneity and superadditivity. 

PROPOSITION 4.2. The following relations hold: 
(1) P(r, s, s), s ~ i, r, s simple O-types, 
(2) P([,rh, h), l , m , n > l ,  l,m, n E N  +, 
(3) P(/,m,n),  l , m , n > l ,  l ,m, n E N  +, 
(4) P(/,th, n), l , m , n > 2 ,  l , m , n @ N  +, 
(5) P(/ ,m,n),  l , m , n > 2 ,  l,m, n E N  +, 
(6) P(~,th, n), re, n > 3 ,  m, n E N  ÷, 
(7) P(2, m,n), re, n > 3 ,  m, n E U  +, 
(8) P(2, rh, ti), re, n > 3 ,  m, n E N  +, 
(9) P(2, n~,h), m , n > 3 ,  m, n E N  +, 
(10) P(2,2,2n), n E N +. 

PROOF. For (1), (2), (4), (6), see [8] Lemmas 3, 4, Proposition 5.0 and for (10) 
see [9] 10.1.17 or [8] Proposition 3.5. (3) follows from (2) by (/,re, n ) =  
(/,rh, h)+(1,1,1). (5), (7), (9) follow from (4), (6), (8) by ( r ,m,n)= 
(r, th, f z )+(r ,m ,h )  whenever r + r =  r. (8) is proved very much like (4) ([8], 
Proposition 5.1, case 1). [] 

Suitable planar Eulerian graphs will help us establish in §5 

PROPOSITION 4.3. 

(11) P0,L,~), 
~ Z 

(12) P(2, 3, ti), 
(13) e(2,3, ,i), 
(14) P(2,~, h), 

(16) P(2,3, h). 

Let n E N ÷ , 3 < n ,  then: 

We shall prove (11)-(13) in section 5. (14)-(16) follows from (11)-(13) (see 
proof of Proposition 4.2). 

PROOF OF THEOREM 4.1. Assume that r, s, t are nonunit simple 0-types, and 
that {r, s, t}ti~ L. We shall prove that P(r, s, t). We first show that some extra 
assumptions may be made, eliminating the cases violating these assumptions. 



VOI. 50, 1985 PRODUCTS OF CONJUGACY CLASSES 67 

(i) We may assume r~ s~  t~  r. Indeed, if r = s or s = t or t = r then P(r, s, t) 
by (1). 

(ii) We may assume {~., 2} ~Z {r, s, t}. Indeed, otherwise {r, s, t} = {2,2, w}, 
where by {r,s,t}Z_L, w(2n)= l% for some n. But by (10) P(?.,~,2n) and so 
P(2,5_,w) by (1) and (2,2, w)=(Z ,2 ,2n)+ (2,2, w); thus P(r,s,t). 

t! t t! Let us write r = r ' + r " ,  s = s ' + s ,  t = t ' +  where: 

r'= ~ r(n)" n*, r"= ~ r(n). n*, 
n < 4  4 < n  

s'= Z s(,,).,,*, Z s(,,). ,,*, 
n < 4  4 ~ n  

t '= ~', t(n)" n*, t "= ~ t(n)" n*. 
n < 4  4 ~ n  

Let M = {2, 2, 3, 3 ,2+3 ,  1 + 2 + 3 }  be the set of nonunit simple O-types r 
satisfying r = r'. 

(iii) We may assume r" ~ 0 or s" ~ 0 or t" ~ O. 

PROOF. We shall show that P(r, s, t) holds otherwise. Indeed, assume r = r', 
s = s', t = t'. Thus, r, s, t ~ M. By (ii) we may further assume {2, 2} c7' {r, s, t}. 
Thus, P(r, s, t) follows from (1) and the following relations: 

P ( 2 , 3 , 2+3 )  

P (2 ,~ ,2+  3) 

P(2,3, 1 + 2 + 3 )  

P(~ ,~ , i  + ~ + ~ )  

P(2,~, i + ?- + 3) 

P(3,3,1 + 2 + 3 )  

P ( ~ , ~ + ~ , i  + ~ + ~ )  

by (2,3, 2 + 3) = (2, 3, 2) + (2, 3, 3), 

by (2, 3, 2 + 3) = (2, ~, 2) + (2, 3, 3), 

by (2, ~, i + 2 + 3) = (2, ~, 3) + (2, 3,2), 

by (2, 3, 2 + 3) = (~, 3, 3) + (2, 3, 2), 

by (2, J , i  + 2 + 3 ) = ( 2 , 3 , 2 ) + ( 2 , 3 , 3 ) ,  

by (2, ~, 2 + J) = (2, 3, 3) + (?., ~,2), 

by (2, ~, i + 2 + 3) = (2, ~, 3) + (2, 3,2), 

by (~,, .~, 2. + 3) = (~,, .~, ~,) + (~,, ~,, 2), 

by ( 3 , 3 , 1 + 2 + 3 ) =  (2,~,3)+(3,3,2) ,  

by (~,2 + 3, 1 + 2 + 3) = (~,2+ 3,~)+ (3,2,2). 

This completes the proof of (ii). 
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We actually proved the 

PROPOSmON 4.4. Let r 

( iv)  We may  assume at 

following restriction of Theorem .4.1: 

= r', s = s', t = t'. I f  {r , s , t } f f_L then P(r,s,t). 

least two of  r", s t', t" to be nonzero. 

PROOF. We show that if r "=  s " = 0 ,  t " ¢  0 then P(r , s , t ) .  By assumption 

r = r', s = s' and so r, s E M. By (ii) we may further assume {r, s} / {2, 2}. Thus, 

P(r, s, t") follows from (2), (12), (13), (16) and (r, s, t") = Xr(,),,o (r, s, h). It follows 

that P(r, s, t) if t' = 0, and so we assume t' / 0. If t' = [ then P(r, s, t) follows 

from (3), (11), (14), (15) and (r, s, t ) =  Y~,,,(,),,o (r, s, n). Thus we assume t ' ~  M. If 

P(r, s, t') then P(r, s, t)  follows from (r, s, ¢) = (r, s, t ') + (r, s, t"), so we may assume 
that P(r, s, t') fails. Hence, by Proposition 4.4, {r, s, t'} ~ L. Thus, P(r, s, t) follows 

from (r, s, t) = (r, s, t' + ~) + (r, s, t"), where t"(n)  > 0, and 

PROPOSmON 4.5. Let { r , s , t } ~  L. Then P ( r , s , t + h )  holds whenever 

{r ,s , t  + h} f f :L .  

PROOF. By Proposition 4.4 and (ii) we may assume n > 3 and {r, s} ~ {2,2}. 

The proposition follows from (1), (2), (4), (11)--(16) and the following identities: 

(~+a,~,w)=(a,~,w)+(LLw) (w =L~), 

(2,2+h,w)=(2,L2)+(2,2,w) (w = 3,3), 

(] + ,i, ], w) = (,i,~, w)+ (L L w) (w =L~), 

(L~+a,w)=(LLw)+(],Lw) (w =L~), 

(L~, w +,i) = (],~,,i)+ (~,], w) (~ =~,~), 

(~+ ,i,], i + ~ + ] ) =  (,i, ~, ~) + (~, ~, ~), 

(~ , ]+  ,i, i + ~ + ] )  -- (L ,i, ~) + (~, ], ~), 

(L] ,  i + ~ +  ] + ri) = (~, ], ~)+ (~, ], ~) + (~, ], ]). [] 

The proof of (iv) is complete. 

We now state the following corollary of Propositions 4.2 and 4.3, whose 

straightforward verification is left to the reader: 

PROFOSmON 4.6. Let  r, s, t be nonunit  simple O-types, s (2 )=  s (3 )=  t (2 )=  0. 

Then P(r, s, t). 

COROLLARY. Let r, s, t be nonunit  simple O-types, with r" ~ O, s" ~ O, t" ~ O. 

Then P(r, s, t). 
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PROOF. Indeed ,  (r, s, t) = (r, s", t") + (r", s, t") + (r", s", t). Hence  by Proposi-  
t ion 4.6, P(r, s, t). [] 

In view of this corollary, the proof  of T h e o r e m  4.1 will be comple te  if we can 
show that 

(v) We may assume r"#O, s"#O, t"#O. 

PROOF. In view of (iv) it is enough  to show P(r, s, t), given r " =  0, s " #  0, 
t" # O. Thus,  r E M. By Proposi t ion 4.6 we have P(r, s", t"). We show first that  we 

t t may assume s ,  t E M. 
Assume  first that  t' ~ M ;  that  is, t' = 0 or t' = 1. Then  by Proposi t ion  4.6 we 

have P(r, s", t). If also s '  ~ M, we have by Proposi t ion  4.6 P(r, s, t), so we may 
assume s ' E  M. Thus  r, s ' G  M. We now distinguish three cases. 

~ . 

1. r=2 ,  s' = 2. T h e n P ( r , s , t ) b y ( r , s , t ) = ( 2 , 2 +  s " ,0=(2, i+" s",t)+ (2,2, t), 
as by Proposi t ion  4.6 we have P(2, i + s", t) and_. by_ (1) P(2,  2,__ t). 

2. r = 2 ,  s ' = 2 .  Then  P(r,s,t) by ( r , s , t )=(2 ,2+s" , t )=(2 ,  s" , t )+(2,2,  t), 
again by Proposi t ion 4.6 and (1). 

3. {r, s'} # {2, 2}. Then  by Proposi t ion 4.5 P(r, s', ~) holds for any n > 3, so if 
r s "  " t " ( n ) > 0 ,  P(r,s, t)  follows f rom ( r , s , t ) = ( r , s ' , h ) + ( ,  ~t). 

Assume  finally that  s ' , t ' ~ M .  T h e n  P(r,s, t)  holds if P(r,s ' , t ' )  does,  by 
P(r, s", t") and (r, s, t) = (r, s', t ') + (r, s", t"). So assume that  P(r, s', t') fails. Then  
by Proposi t ion  4. 4 {r, s', t'} E L. Dist inguish three cases: 

1. {r, s', t'} = {2, 2, u}, u E {3, 3}. Then  P(r, s, t) is established as follows: 

If (r, s', t ') = (2, 2, u), 

If (r, s', t ') = (~, 2, u),  

If (r, s',  t') = (u, 2, 2), 

by (r, s, t) = (2, i + s", t") + (2, 2, t). 

by (r, s, t) = (~, s", t") + (2, 2, t). 

= s , 1 + t " )+  (r,2,2). b y ( r , s , t )  (r, " " 

2. {r, s, t} = {3, 3, v}, v E {2, 2}. Then  P(r, s, t) is established as follows: 

If 

If 

If 

3. {r,s',t'} 

If (r, s', 

If (r, s',  

(r , s ' , t ' )=(3,~ ,v) ,  by (r ,s , t )=(3,  i+s" , t " )+(3 ,3 ,  t). 

(r ,s ' , t ' )=(3,3,  v), by (r ,s , t )=(~,s" , t")+(3,3 ,  t). 

(r,s ' , t ')=(v,~, '3),  by ( r , s , t )=(v , i  + s",t")+(v,3,3).  

= {'2, 3, i + 2 + 3}. T h e n  P(r, s, t) is established as follows: 

t') (2,3, i + 2 + 3 ) ,  by(r , s , t )  " " "  t") = =(2 ,  s , 1 +  + (:2, 3, 2. + :3). 

t ' ) = ( ~ , i + ~ + ~ , 5 ) ,  by (r ,s , t )=(3,  i + s  , " t") + (3,2 + 3,2). 
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I f ( r , s , t )  ( i+2+3 ,2 ,3 ) ,  b y ( r , s , t )  ( i + 2  " " " " " " " = = +3, s , t  )+(2+3,2 ,3) .  

This completes the proof of (v), and thereby the proof of Theorem 4.1. 

§5. Some more planar Eulerian graphs 

In this section we establish Proposition 4.3, thereby completing the proof of 

Theorem 4.1, and of Theorem 2. We use planar Eulerian graphs to establish the 
P-relations (11), (12), (13) listed in the proposition. A brief description of this 
method, introduced in [8], follows. 

By a bicolored planar Eulerian graph (BPEG) we mean a planar Eulerian 

graph (PEG) G with a proper black and white coloring of the G-regions - -  the 
plane regions it defines. (That is, two G-regions whose closures share an edge of 
G are colored differently.) With each BPEG G one associates three types, be, 

dG, wo, where bo (l) is the number of black G-regions bounded by l G-edges, 
d o ( m )  is the number of G-vertices of degree 2m and w G ( n )  is the number of 
white G-regions bounded by n G-edges. In [8] it is shown that 

THEOREM 5.1. Le t  G be any  B P E G .  Then  P(bG,  dG, wG). 

With this theorem at hand, we simultaneously prove graphically (11)-(13), 
restated as: 

THEOREM 5.2. Le t  n E N +, 4 <= n. T h e n  : 

(11). P(2, 3, h), 
(12), P(2,3, h), 
(13), P(2,2, fi). 

PROOF. We treat separately the cases n = 4 ,  n = 5 , 6 = < n < N o a n d  n=No. 

Case  1. n = 4 ,  seeFig. 1. 

By (a) we have P(4.3",2.1" +5.2",3.4"), and by 

(a) (b) 

Fig. 1. 

(c) 
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(~, 9~, ~) = No" (4.3", 2.1" + 5.2", 3.4") 

we have P(3,~,4), and so by symmetery of P, P(~,3,4), i.e., (13)4 holds. 
By (b) we have P(2.(1 * + 3"), 4-2", 2-4*) and so P(2, 3, 4) holds, i.e. (12)4 holds. 
By (c) P(2.1* +4",3.2' ,2.3") holds, and so P(2,3,4) holds, i.e. (11)4 holds. 

Case 2. n = 5 ,  seeFig. 2. 
By (a), P(3.5",3.1' + 6.2",5.3"), and so P(~,3,5) by 

(3, §, 5) = No" (3.5", 3.1" + 6.2", 5.3") 

and the symmetry of P. Thus (13)5 holds 
By (b), P(2.1* +6.3' ,  10.2",4.5") and so P(-5,~,5), i.e. (12)5 holds. 
By (c), P(4.3",6.2",2.(1" +5*)) and so P(2,3,~), i.e. (11)5 holds. 

(a) (b) 

Fig. 2. 

(c) 

Case 3. 6 <-_ n < No. 

We establish graphically the case n = 6, see Fig. 3. 
By (a), P(3, 1" +2,6) and so by (3,2, 6) = No" (3, 1' + ?.,6) and symmetry of P, 

P(),3,6), i.e. (13)6 holds. 
By (b), P(l* + 3, 5, 6) and so P(2, ~, (~), i.e. (12)~ holds. 
By (c), P(3,-5,1' +6) and so P(2,3,6), i.e. (11)6 holds. 
For 6 < n < No similar BPEGs are easily drawn (and an inductive construction 

for all n can be described; see [8], proof of Proposition 5.1). 

Case 4. n=No, seeFig. 4. 
By (a), P(3, 2, N~) and so P(2, 3,1~o) by (3, 2, I~o) = No" (3, 2, N*) and symmetry 

of P. Thus (13)Mo holds. 
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By (b), P( I*+ 3, 2, 90) and so P(2, 3, 90) and (12). 0 holds. 
By (c), P(3,2, 1" +8")  and so P(2,3,1~o) and (11), o holds. 

This completes the proof of Theorem 5.2, and the proof of Theorem 2 with it. 
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